See if You Qualify for
Stem Cell Therapy

    • captcha

    See our privacy policy


Organizations that
Charles H. Newcomer
Dr. Ernesto Gutierrez
Are members of




(OA) also known as degenerative arthritis or degenerative joint disease or osteoarthrosis, is a group of mechanical abnormalities involving degradation of joints,including articular cartilage and subchondral bone. Symptoms may include joint pain, tenderness, stiffness, locking, and sometimes an effusion. A variety of causes—hereditary, developmental, metabolic, and mechanical—may initiate processes leading to loss of cartilage. When bone surfaces become less well protected by cartilage, bone may be exposed and damaged. As a result of decreased movement secondary to pain, regional muscles may atrophy, and ligaments may become more lax.   Treatment generally involves a combination of exercise, lifestyle modification, and analgesics. If pain becomes debilitating, joint replacement surgery may be used to improve the quality of life. OA is the most common form of arthritis, and the leading cause of chronic disability in the United States. It affects about 8 million people in the United Kingdom and nearly 27 million people in the United States.

Signs and symptoms


Bouchard’s nodes and Heberden’s nodes may form in osteoarthritis
The main symptom is pain, causing loss of ability and often stiffness. “Pain” is generally described as a sharp ache, or a burning sensation in the associate muscles and tendons. OA can cause a crackling noise (called “crepitus”) when the affected joint is moved or touched, and patients may experience muscle spasm and contractions in the tendons. Occasionally, the joints may also be filled with fluid. Humid and cold weather increases the pain in many patients.

OA commonly affects the hands, feet, spine, and the large weight bearing joints, such as the hips and knees, although in theory, any joint in the body can be affected. As OA progresses, the affected joints appear larger, are stiff and painful, and usually feel better with gentle use but worse with excessive or prolonged use, thus distinguishing it from rheumatoid arthritis.

In smaller joints, such as at the fingers, hard bony enlargements, called Heberden’s nodes (on the distal interphalangeal joints) and/or Bouchard’s nodes (on the proximal interphalangeal joints), may form, and though they are not necessarily painful, they do limit the movement of the fingers significantly. OA at the toes leads to the formation of bunions, rendering them red or swollen. Some people notice these physical changes before they experience any pain.

OA is the most common cause of joint effusion, sometimes called water on the knee in lay terms, an accumulation of excess fluid in or around the knee joint.



New information is now debunking the prior medical belief,  that most investigators believe that mechanical stress on joints underlies all osteoarthritis. There are many sources of structural stress, including misalignments of bones caused by congenital or pathogenic causes; mechanical injuries, excess weight,  loss of strength in muscles supporting joints, and  any number of impairments of peripheral nerves that lead to sudden or uncoordinated movements, resulting in over-stressed joints.

However exercise, including running in the absence of injury, has not been found to increase one’s risk of developing osteoarthritis. Nor has cracking ones knuckles been found to play a role.

Some of the newer work has focused on other causes including genetic predisposition or epigenetic  causes along with inflammation, poor nutrition with or without malabsorption to name a few.

Primary Osteoarthritis


Primary osteoarthritis of the left knee. Note the osteophytes, narrowing of the joint space (arrow), and increased subchondral bone density (arrow).

Primary osteoarthritis is a chronic degenerative disorder related to but not caused by aging, as there are people well into their nineties who have no clinical or functional signs of the disease. As a person ages, the water content of the cartilage decreases as a result of a reduced proteoglycan content, thus causing the cartilage to be less resilient. Without the protective effects of the proteoglycans, the collagen fibers of the cartilage can become susceptible to degradation and thus exacerbate the degeneration. Inflammation of the surrounding joint capsule can also occur, though often mild (compared to what occurs in rheumatoid arthritis). This can happen as breakdown products from the cartilage are released into the synovial space, and the cells lining the joint attempt to remove them. New bone outgrowths, called “spurs” or osteophytes, can form on the margins of the joints, possibly in an attempt to improve the congruence of the articular cartilage surfaces. These bone changes, together with the inflammation, can be both painful and debilitating.

A number of studies have shown that there is a greater prevalence of the disease among siblings and especially identical twins, indicating a hereditary basis. Up to 60% of OA cases are thought to result from genetic factors.

Both primary generalized nodal OA and erosive OA (EOA. also called inflammatory OA) are sub-sets of primary OA. EOA is a much less common, and more aggressive inflammatory form of OA which often affects the DIPs and has characteristic changes on x-ray.



Diagnosis is made with reasonable certainty based on history and clinical examination. X-rays may confirm the diagnosis. The typical changes seen on X-ray include: joint space narrowing, subchondral sclerosis (increased bone formation around the joint), subchondral cyst formation, and osteophytes. Plain films may not correlate with the findings on physical examination or with the degree of pain. Usually other imaging techniques are not necessary to clinically diagnose osteoarthritis.

In 1990, the American College of Rheumatology, using data from a multi-center study, developed a set of criteria for the diagnosis of hand osteoarthritis based on hard tissue enlargement and swelling of certain joints. These criteria were found to be 92% sensitive and 98% specific for hand osteoarthritis versus other entities such as rheumatoid arthritis and spondyloarthropathies.

Related pathologies whose names may be confused with osteoarthritis include pseudo-arthrosis. This is derived from the Greek words pseudo, meaning “false”, and arthrosis, meaning “joint.” Radiographic diagnosis results in diagnosis of a fracture within a joint, which is not to be confused with osteoarthritis which is a degenerative pathology affecting a high incidence of distal phalangeal joints of female patients.

Stem Cell Therapy


The large and expanding body of publications utilizing stem cell technology in orthopedic applications indicates that the infusion of stem cells and growth factors result in the modulation of T cell activity, decreased inflammatory chemicals and the stimulation of the chondocytes.

This combination of responses is probably the basis for the results seen in the referenced clinical trials.  There clearly needs to be an increased utilization of the stem cell approach to safely address this condition. Unfortunately this is unlikely, as the use of expensive and risky pharmaceutical agents has taken the forefront. The limited options for this disorder suggest other avenues of treatment should preclude the surgeries that typical mark the end point of the disease process.

We at World Stem Cells, LLC feel strongly that the non-responders to conventional therapies should utilize a stem cell approach, prior to the use of the surgical and/or long-term steroidal or even non-steroidal medicinal applications.


Autologous Stem-Cell Transplant  Phases :

After a review of your medical records and discussions with medical staff, a protocol is designed especially for you. Specifics of your condition are addressed along with any special needs.  It may be similar to the one illustrated below:

·      Day one:     Arrive in Cancun and get settled

·      Day two:     Meet with Dr. Abblitt and our staff  for an examination and discussion of the procedures and  laboratory collections along with stem cell stimulation. Our staff video photographer will also interview you.

·      Day three:  Early morning procedures including a blood test and, dependent on the response to our therapy, additional stimulation or stem cell harvesting and re-implantation, if cellular numbers and viability are present at a high level. Potentially physical or occupational therapy, later in the day.

·      Day four:   Cellular re-implantation if not done on day 3. This will require a restful day and observation, including a post treatment examination. Additional physical or occupational therapy per the individual protocol.

·      Day five:    Meet with physician/s to reassess your condition and participate in physical/occupational therapy services. Discuss follow up and communications with both our services and the International Cellular Medicine Society. Suggest additional opportunities for maximizing the stem cell therapy.

·      Day six:      Return home or optionally there may be the use of additional ancillary therapies to enhance the procedure.


What makes our treatment different ? Our approach includes stimulation, prior to collection, processing and expansion of the cell along with the use of growth factors, together with an integrated medical approach. This maximizes the growth and implantation potentials yielding optimized potentials of making changes in your disease.

Our staff physicians are all board certified, in their field with years of experience. Your team includes both primary and ancillary care professionals devoted to maximizing your benefits from the procedures.

We enroll you in an open registry to track your changes independently, for up to 20 years. As our patient we also keep you abreast of the newest developments in stem cell research. This is an ongoing relationship to maintain and enhance your health.

Our promise is to provide you with travel and lodging support, access to bilingual staff members throughout the entire process and most importantly the best medical care possible.

Although all the articles are very technical in nature the take home message remains consistent. Stem cell therapy works !

There is an increasing understanding of the safe and efficacious use of bone marrow derived stem cell therapy to treat even those with Grade 4  (bone on bone) disorders, non-healing fractures and osteochondral tears .

This much less invasive therapy along with less time to heal and  regain function when coupled, with other therapies, stands the test of time. For the last 7 years worldwide researchers have proven clinical successes. Our therapy and pleased patients at World Stem Cells Clinic mirrors those of the published trials. By continuing to innovate and incorporate the newest work, in the industry, our patients derive the best of class options, to address their condition.

Adv Biochem Eng Biotechnol. 2012 Mar 29.

Potential for Osteogenic and Chondrogenic
Differentiation of MSC.

Lavrentieva A, Institut für Technische Chemie, Leibniz Universität Hannover, Callinstrasse 5, 30167, Hannover, Germany,


The introduction of mesenchymal stem cells (MSC) into the field of tissue engineering for bone and cartilage repair is a promising development, since these cells can be expanded ex vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into different cell lineages. Mesenchymal stem cells isolated from various tissues have been intensively studied and characterized by many research groups. To obtain functionally active differentiated tissue, tissue engineered constructs are cultivated in vitro statically or dynamically in bioreactors under controlled conditions. These conditions include special cell culture media, addition of signalling molecules, various physical and chemical factors and the application of different mechanical stimuli. Oxygen concentration in the culture environment is also a significant factor which influences MSC proliferation, stemness and differentiation capacity. Knowledge of the different aspects which affect MSC differentiation in vivo and in vitro will help researchers to achieve directed cell fate without the addition of differentiation agents in concentrations above the physiological range.

Arthroscopy: The Journal of Arthroscopic and Related Surgery
Volume 27, Issue 5, Supplement , Page e43, May 2011

The Use of Bone Marrow Aspirate Concentrated for Full-thickness Knee Cartilage Lesions in a One-step Procedure: A Prospective Study (SS-25)

Alberto W. Gobbi, M.D.*, Georgios Karnatzikos, M.D., Vivek Mahajan, M.D.


The purpose of our study was to determine the effectiveness of cartilage repair utilizing one-step surgery with autologous bone marrow aspirate concentrate (BMAC) and a collagen I/III matrix.


We prospectively followed-up 25 patients (mean age 46 years) operated for grade IV cartilage lesions of the knee, for an average of 2 years. All patients underwent a mini-arthrotomy and concomitant transplantation with BMAC covered with the collagen matrix (Chondro-Gide; Geistlich, Wolhusen, Switzerland). Bone marrow was harvested from ipsilateral iliac crest and subjected to concentration and activation with Batroxobin solution (Plateltex; act-Plateltex SRO, Bratislava, Slovakia). Co-existing pathologies were treated before or during the same surgery. All patients followed the same specific rehabilitation program for a minimum of 6 months. Ten patients had multiple chondral lesions and the average lesion size was 8.3 cm2. X-rays and MRI were collected preoperatively, at 1 year, and at final follow-up. VAS, IKDC, KOOS, Lysholm, Marx, SF36, and Tegner scores were collected preoperatively, at 6-12 months, and final follow-up; nonparametric analysis was performed with the Wilcoxon rank test to compare these variations. Six patients gave their consent for second-look arthroscopy and 5 of them for a concomitant biopsy.


Patients showed significant improvement in all scores at final follow-up (p < .005). Mean preoperative values were: VAS 5.2, IKDC subjective 43.6, KOOS Scores P=66.2/ S=68.2/ ADL=70.0/ SP=41.6/ QOL=37.2, Lysholm 60.4, Marx 4.2, SF36 (P/M) 40.4/ 51.5 and Tegner 2.0. At final follow-up, mean scores were: VAS 0.7, IKDC subjective 80.7, KOOS P=94.0/ S=90.1/ ADL=95.1/ SP=71.3/ QOL=77.5, Lysholm 92.9, Marx 10.3, SF36 (P/M) 55.5/54.0 and Tegner 4.9. MRI showed good coverage of the lesion and tissue quality in all patients in accordance with clinical results. Good histologic findings were reported for all the specimens analyzed that presented hyaline-like features. No adverse reactions or postoperative complications were noted.


This study showed that the use of autologous bone marrow derived and collagen I/III matrix in a one-step procedure could represent an improvement on the currently available techniques for cartilage transplantation could be a viable technique in the treatment of grade IV knee chondral lesions.


AmJSportsMed. 2013 May;41(5):1090-9. doi: 10.1177/0363546513479018. Epub 2013 Mar 4.

Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus.

Kim YS, Park EH, Kim YC, Koh YGCenter for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul, Korea.



The ideal treatment for osteochondral lesions of the talus (OLTs) is still controversial, especially in older patients. Recently, mesenchymal stem cells (MSCs) have been suggested for use in the cell-based treatment of cartilage lesions.


To compare the clinical outcomes of MSC injection and arthroscopic marrow stimulation treatment with those of arthroscopic marrow stimulation treatment alone for the treatment of OLTs in older patients.


Among 107 patients with OLTs treated arthroscopically, only the patients older than 50 years (65 patients) were included in this study. Patients were divided into 2 groups: 35 patients (37 ankles) treated with arthroscopic marrow stimulation treatment alone (group A) and 30 patients (31 ankles) who underwent MSC injection along with arthroscopic marrow stimulation treatment (group B). Clinical outcomes were evaluated according to the visual analog scale (VAS) for pain, the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale, and the Roles and Maudsley score. The Tegner activity scale was used to determine outcomes in activity levels.


The mean VAS score in each group was significantly improved (P < .05) from 7.2 ± 1.1 to 4.0 ± 0.7 in group A and from 7.1 ± 1.0 to 3.2 ± 0.9 in group B. The mean AOFAS score in each group was also significantly improved (P < .05) from 68.0 ± 5.5 to 77.2 ± 4.8 in group A and from 68.1 ± 5.6 to 82.6 ± 6.4 in group B. There were significant differences in mean VAS and AOFAS scores between the groups at final follow-up (mean, 21.8 months; range, 12-44 months) (P < .001). The Roles and Maudsley score showed significantly greater improvement in group B than in group A after surgery (P = .040). The Tegner activity scale score was significantly improved in group B (from 3.5 ± 0.7 to 3.8 ± 0.7; P = .041) but not in group A (from 3.5 ± 0.8 to 3.6 ± 0.6; P = .645). Large lesion size (≥109 mm(2)) and the existence of subchondral cysts were significant predictors of unsatisfactory clinical outcomes in group A (P = .04 and .03, respectively). These correlations were not observed in group B.


Injection of MSCs with marrow stimulation treatment was encouraging in patients older than 50 years compared with patients treated with marrow stimulation treatment alone, especially when the lesion size was larger than 109 mm(2) or a subchondral cyst existed. Although still in the early stages of application, MSCs may have great potential in the treatment of OLTs in patients older than 50 years, and more evaluations of its effect should be performed.


Bone marrow stem cells stimulate healing process in non-union fracture

Bhattacharjee A. ICRS Newsletter. 2012;Winter:16:36.   January 7, 2013

Autologous bone marrow-derived mesenchymal stem cells may play a role in the formation of new bone in non-union fracture sites, according to this study.

Researchers from the Robert Jones and Agnes Hunt Orthopaedic Hospital and Keele University in United Kingdom conducted a double-blinded study of 35 patients (21 men and 14 women). The patients acted as their own control, with one side of the fracture site receiving serum while the other was inserted with bone marrow-derived mesenchymal stem cells (BMMSC), according to the abstract.

“In summary, cells from non-union site show reduced capacity for bone regeneration and hence augmenting them with autologous BMMSC can possibly stimulate new bone formation in a setting of non-union,” the researchers stated in the abstract.

Six reviewers independently analyzed the radiographics, and interim results showed improvement on side that received autologous BMMSC compared to the side of the fracture that received serum alone, according to the abstract.

Tissue Eng. 2006 Jul;12(7):1787-98.

Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees.
Hollander AP, Dickinson SC, Sims TJ, Brun P, Cortivo R, Kon E, Marcacci M, Zanasi S, Borrione A, De Luca C, Pavesio A, Soranzo C, Abatangelo G.

University of Bristol Academic Rheumatology, Department of Clinical Science at North Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol, United Kingdom.

The regeneration of damaged organs requires that engineered tissues mature when implanted at sites of injury or disease. We have used new analytic techniques to determine the extent of tissue regeneration after treatment of knee injury patients with a novel cartilage tissue engineering therapy and the effect of pre-existing osteoarthritis on the regeneration process. We treated 23 patients, with a mean age of 35.6 years, presenting with knee articular cartilage defects 1.5 cm2 to 11.25 cm2 (mean, 5.0 cm2) in area. Nine of the patients had X-ray evidence of osteoarthritis. Chondrocytes were isolated from healthy cartilage removed at arthroscopy. The cells were cultured for 14 days, seeded onto esterified hyaluronic acid scaffolds (Hyalograft C), and grown for a further 14 days before implantation. A second-look biopsy was taken from each patient after 6 to 30 months (mean, 16 months). After standard histological analysis, uncut tissue was further analyzed using a newly developed biochemical protocol involving digestion with trypsin and specific, quantitative assays for type II collagen, type I collagen, and proteoglycan, as well as mature and immature collagen crosslinks. Cartilage regeneration was observed as early as 11 months after implantation and in 10 out of 23 patients. Tissue regeneration was found even when implants were placed in joints that had already progressed to osteoarthrosis. Cartilage injuries can be effectively repaired using tissue engineering, and osteoarthritis does not inhibit the regeneration process.

Comment: Its interesting to note that as early as 2006 researchers were noting the resiliency of the cartilaginous tissues with the use of autologous stem cells.

Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report.

Kasemkijwattana CHongeng SKesprayura S,Rungsinaporn VChaipinyo KChansiri K.   J Med Assoc Thai. 2011 Mar;94(3):395-400. Department of Orthopedics, Faculty of Medicine, HRH Princess Maha Chakri Sirindhorn Medical Center, Srinakhrinwirot University, Nakhon Nayok, Thailand.


The authors reported the results of autologous bone marrow mesenchymal stem cells (BM-MSCs) implantation in two patients with large traumatic cartilage defects of the knee.


Two patients with grade 3-4 according to the International Cartilage Repair Society Classification System were performed autologous bone marrow mesenchymal stem cells (BM-MSCs) implantation on December 2007 and January 2008. The bone marrow aspiration was performed in the outpatient visit under local anesthesia and sent to the laboratory for BM-MSCs isolation and expansion. The BM-MSCs were re-implanted into the defects with the three-dimensional collagen scaffold. The patients were clinical evaluated preoperatively and postoperatively with Knee and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee Score (IKDC Score) and arthroscopic examination. The duration of follow-up was 30-31 months.


There was no postoperative complication. The clinical evaluation with Knee and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee Score (IKDC Score) showed significant improvement.The arthroscopic assessment showed the good defect fill, stiffness and incorporation to the adjacent cartilage.


The autologous bone marrow mesenchymal stem cells implantation showed the potential for the treatment of large cartilage defects. The one-stage procedure is the advantage over the conventional autologous chondrocytes implantation. The long-term follow-up with long last hyaline-like cartilage is required.


Adult autologus SCs  were used in this study.  At the World Stem cells Clinic we activate the stem cells with platelet derived growth factors that are combined for implantation. this combination has significantly better response than a singular approach.

Stem Cells. 2007 Dec;25(12):3244-51. Epub 2007 Sep 13.

Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology.

NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.


Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from the iliac crest, depending on age and overall physical fitness. Here, we analyzed whether the availability and chondrogenic differentiation capacity of MSCs isolated from the femoral shaft as an alternative source is age- or OA etiology-dependent. MSCs were isolated from the bone marrow (BM) of 98 patients, categorized into three OA-etiology groups (age-related, joint trauma, joint dysplasia) at the time of total hip replacement. All BM samples were characterized for cell yield, proliferation capacity, and phenotype. Chondrogenic differentiation was studied using micromass culture and analyzed by histology, immunohistochemistry, and quantitative reverse transcriptase-polymerase chain reaction. Significant volumes of viable BM (up to 25 ml) could be harvested from the femoral shaft without observing donor-site morbidity, typically containing >10(7) mononuclear cells per milliliter. No correlation of age or OA etiology with the number of mononuclear cells in BM, MSC yield, or cell size was found. Proliferative capacity and cellular spectrum of the harvested cells were independent of age and cause of OA. From all tested donors, MSCs could be differentiated into the chondrogenic lineage. We conclude that, irrespective of age and OA etiology, sufficient numbers of MSCs can be isolated and that these cells possess an adequate chondrogenic differentiation potential. Therefore, a therapeutic application of MSCs for cartilage regeneration of OA lesions seems feasible.

Curr Mol Med. 2012 Apr 18. [Epub ahead of print]


Immunosuppressive properties of mesenchymal stem cells: advances and applications.

De Miguel MPFuentes-Julián SBlázquez-Martínez APascual CYAller MAArias JArnalich-Montiel F.  Cell Engineering Laboratory, IdiPaz, La Paz Hospital Research Institute, Madrid, Spain.




Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo studies have shown many discrepancies regarding the immunomodulatory properties of MSCs. These studies have been designed to test the efficacy of MSC therapy in two different immune settings: the prevention or treatment of allograft rejection episodes, and the ability to suppress abnormal immune response in autoimmune and inflammatory diseases. Preclinical studies have been conducted in rodents, rabbits and baboon monkeys among others for bone marrow, skin, heart, and corneal transplantation, graft versus host disease, hepatic and renal failure, lung injury, multiple sclerosis, rheumatoid arthritis, diabetes and lupus diseases. Preliminary results from some of these studies have led to human clinical trials that are currently being carried out. These include treatment of autoimmune diseases such as Crohn’s disease, ulcerative colitis, multiple sclerosis and type 1 diabetes mellitus; prevention of allograft rejection and enhancement of the survival of bone marrow and kidney grafts; and treatment of resistant graft versus host disease. We will try to shed light on all these studies, and analyze why the results are so contradictory.

Comment: This is an excellent example of a literature review and then subsequent inquiry into some of the known and as yet to be found pathways  that allow the stem cells their ability to positively impact  diseases. I think it’s interesting that “mother nature’ allows these cells such a pervasive impact on the inflammatory processes. Great design…

Share:Share on Facebook0Pin on Pinterest0Tweet about this on Twitter0Share on Google+0Share on LinkedIn0


  • Stem Cell Treatment or Hip Surgery

    Stem Cell Treatment or Hip Surgery

    I have grade IV osteoarthritis (severe loss of cartilage leading to bone rubbing on bone) of my right hip. I have seen 3 orthopedic doctors, all of which have said I need to have surgery for hip replacement. Additional options for treatment were limited. As a nurse, and at my age, having seen both good and bad outcomes following hip replacement, and also knowing hip replacement is not without risk, I chose to seek other options of treatment for myself.

    Read more
  • AUTISM a stem cell treatment success

    AUTISM a stem cell treatment success

    Andrew is thriving. We have seen and continue to see major improvements. He has matured beyond anything I can explain (I have had to rapidly adjust my parenting as I now have a much older & more sophisticated child), his comprehension (perhaps better to say his ability to express and act upon his comprehension) is now age appropriate.

    Read more
  • Hello


    Hello, When we came from Cancun the first week we noticed an improvement in eye contact. It improved about 70%. His attention improved about 50% and he was more in our world when it comes to understand what it happening around him. He lost some of his attention for the last two weeks but it is still better than it was prior stem cells and even Janik BIs therapist say it is easier to work with Janik in ABA because his eye contact is better and his focus is also better."

    Read more
  • Owen, happy again


    Well Owen is happy again, which is the biggest improvement. He is laughing and giggling again. His eye contact has improved and he is playing with toys again. All of these things had stopped. I`m so happy that he is happy. ( His Mom)Read more


  • Miniature human stomach grown from stem cells:

    December 16th, 2014

    Stem Cells For a Better Quality of Life-- This is only one of the benefits the medical industry is receiving from the study of stem cells


    Read more

  • Stem Cell breakthrough!:

    November 22nd, 2014

    World Stem Cell Institute a 501 c3 Non-Profit organized to per


    Read more


    October 29th, 2014

    This is your opportunity to start stem cell treatments i


    Read more

Be sure to visit our Blog!

    • There is a wealth of information available on Stem Cell therapy and the emerging field in general. Many of our patients have asked me to present further information and give them a working knowledge of the terms and general information necessary to understand the industry. Under the Stem Cell Glossery section of our website are some of the most used terms. A posting of additional resources will be present shortly.

      Please note that we will be posting a number of clips for this purpose. In our YouTube area check for the updates. A recent lecture series given at the Annual Gathering of Mensa 2011 will be included.

      Recently a number of clinics have begun selling "cells" for treatments. The treatments are via IV and all sorts of claims are being made. The idea of the franchise of stem cell centers is the opposite of personalized medicine and clearly not the direction that I feel will benefit the majority of patients.

      As a consumer the buyer beware "caveat emptor " needs to be heightened in the competitive environment of questionable practices by "cell" salesman/women.
*DISCLAIMER: As with any medical treatment, no guarantees or claim of cures are made as to the extent of the response to treatment. Results vary from patient to patient, even with a similar diagnosis, as the body's internal status is unique to each individual patient. Because of this fact we cannot offer, infer or suggest that there is any certainty of a given outcome. Many of our treatments are not currently FDA approved. We do not use embryonic or fetal cells in any of our treatments.